目 次

1 6几三十年全六十	(11) IPA (インドールピルビン酸)試験67
1 一般試験法	(12) クエン酸塩利用試験67
1.1 機器分析法3	(13) マロン酸塩利用試験67
1.1.1 高速液体クロマトグラフィー3	(14) 有機酸利用試験67
1.1.2 イオンクロマトグラフィー9	(15) 運動性試験67
1.1.3 高速液体クロマトグラフィー/質量分析法 …15	(16) エスクリンの加水分解試験67
1.1.4 ガスクロマトグラフィー22	(17) ゼラチン液化試験67
1.1.5 ガスクロマトグラフィー/質量分析法 …25	7) 食中毒菌の PCR 法による迅速同定68
1.1.6 原子吸光光度法28	(1) 鋳型 DNA の調製68
1.1.7 ICP 発光分光分析法41	(2) PCR 反応 ······68
1.1.8 ICP/質量分析法48	(3) アガロースゲル電気泳動70
	8) 免疫学的検査法71
1.2 微生物試験法55	(1) スライド凝集法71
1.2.1 細 菌55	(2) 逆受身ラテックス凝集法(RPLA)71
1.2.1.1 細菌一般試験法55	1.2.1.2 汚染指標細菌試験法72
1) 滅 菌55	1) 大腸菌群73
(1) 火炎滅菌法55	(1) 乳糖ブイヨン法73
(2) 乾熱滅菌法55	(2) BGLB 培地法 ······73
(3) 高圧蒸気滅菌法55	(3) デオキシコレート寒天培地法74
(4) ろ過滅菌法55	(4) メンブランフィルター法74
2) 試料の採取および調製57	2) ふん便性大腸菌群76
(1) 試料の採取57	(1) 最確数法76
(2) 試料の調製57	(2) 限度試験法76
3) 菌数測定58	3) 大腸菌76
(1) 混釈平板培養法59	(1) 特定酵素基質培地法76
(2) 塗抹平板培養法60	4) 腸球菌77
(3) 最確数(MPN)法······60	(1) AC 培地による方法77
(4) メンブランフィルター法63	(2) M-エンテロコッカス寒天培地による
4) 染色法64	方法77
(1) 単染色法64	(3) 腸球菌の菌種鑑別試験法77
(2) グラム染色法64	5) 標準平板菌数(一般細菌数)78
5) 培 地65	6) 低温細菌数79
(1) 培地の調製65	7) 耐熱性細菌数79
(2) 培地各論65	8) 嫌気性細菌数79
6) 生化学的試験66	9) 全菌数80
(1) インドール試験	1.2.1.3 食中毒菌の系統的試験法81
(2) ONPG 試験(β-ガラクトシダーゼ試験)	1) 分離培養法81
(2) VID(X	(1) 直接分離培養
(3) VP (Voges-Proskauer) 試験・・・・・・・・66	(2) 増菌培養後の分離培養 ······81 2) 同定法 ·····81
(4) オキシダーゼ試験 ······66 (5) 硝酸塩還元試験 ·····66	2) 同定法 ······81 1.2.1.4 食中毒菌の個別試験法·····83
(6) カタラーゼ試験	1.2.1.4 复甲毒困の個別試験法83 1) 黄色ブドウ球菌83
(7) リシン脱炭酸試験, オルニチン脱炭酸	1) 黄色ノドリ球園
試験、アルギニン加水分解試験66	(2) 同定法
(8) 糖分解(発酵) 試験	2) ボツリヌス菌84
(9) シアン化カリウム試験67	(1) ボツリヌス毒素の証明法84
(10) 尿素分解試験67	(2) 分離培養法84
	, ., ., .,

(3) 同定法84	(2) 同定法103
3) ウエルシュ菌85	4) 仮性結核菌(偽結核菌)103
(1) 分離培養法85	1.2.2 真 菌104
(2) 同定法	1.2.2.1 真菌一般試験法105
4) セレウス菌87	1) 滅 菌105
(1) 分離培養法87	2) 試料の採取および調製105
(2) 同定法87	3) 培 地105
5) 下痢原性大腸菌一般88	
	(1) 培地の調製・・・・・・・105
(1) 分離培養法 ······88 (2) 同定法 ·····88	(2) 培地各論
	4) 菌数測定法
6) 腸管出血性大腸菌 O 157 ······89	(1) 実体顕微鏡による検鏡法106
(1) 分離培養法89	(2) 血球計算板を用いる計数法106
(2) 同定法	(3) 粒培養法
7) サルモネラ属菌 ······91	(4) 希釈培養法
(1) 分離培養法91	(5) スリットサンプラー法106
(2) 同定法	(6) ふき取り培養法106
8) エルシニア・エンテロコリチカ92	(7) ローダックプレート法106
(1) 分離培養法92	1.2.2.2 真菌の分離・同定法108
(2) 同定法92	1) 食品汚染真菌の分離法109
9) 腸炎ビブリオ93	(1) 直接分離法109
(1) 分離培養法93	(2) 湿室検査法・・・・・・109
(2) 同定法93	(3) 分離培地を用いる培養法109
10) コレラ菌(O1ビブリオ・コレレ)および	(4) 粒状試料中の真菌の分離培養法109
NAG ビブリオ (ナグビブリオ)94	2) 空中真菌の分離培養法110
(1) 分離培養法94	(1) スリットサンプラー法110
(2) 同定法94	(2) ろ過法・・・・・・・・111
11) ビブリオ・フルビアリス95	(3) 寒天平板培地落下法111
(1) 分離培養法95	(4) 金属板落下法
(2) 同定法95	3) 物体表面の真菌の分離培養法111
12) プレジオモナス・シゲロイデス96	(1) ふき取り培養法111
(1) 分離培養法96	(2) ローダックプレート法111
(2) 同定法96	4) 糸状菌の形態観察法111
13) エロモナス・ヒドロフィラ, エロモナス・	(1) 肉眼的観察法111
ソブリア96	(2) 直接検鏡法111
(1) 分離培養法96	(3) スライド培養法111
(2) 同定法96	5) 酵母の形態観察法114
14) カンピロバクター・ジェジュニ, カンピロ	(1) 肉眼的観察法
バクター・コリ97	(2) 顕微鏡による観察法114
(1) 分離培養法97	(3) 胞子形成試験114
(2) 同定法97	6) 酵母の生化学的検査法114
15) 赤痢菌98	(1) ウレアーゼ試験114
(1) 分離培養法98	(2) 炭水化物利用試験114
(2) 同定法98	(3) ユビキノン分子種の高速液体クロマト
1.2.1.5 環境病原性細菌試験法99	グラフィーによる同定法114
1) リステリア・モノサイトゲネス99	7) 真菌の DNA 塩基配列による同定法117
(1) 分離培養法99	(1) DNA の抽出法 ·······117
(2) 同定法99	(2) 26S rRNA 遺伝子(D 1/D 2 領域)の
2) レジオネラ属菌101	PCR 增幅 ·······117
(1) 分離培養法101	(3) DNA 塩基配列の決定117
(2) 同定法101	(4) 菌種の同定117
3) ビブリオ・バルニフィカス103	1.2.2.3 マイコトキシン産生菌試験118
(1) 分離培養法103	1) マイコトキシン産生菌の属の同定119

2) マイコトキシン産生性試験120	(1) 低バックグラウンドβ線計数装置による
(1) アフラトキシン産生性試験120	方法161
(2) オクラトキシン産生性試験122	(2) 低バックグラウンド液体シンチレー
(3) トリコテセン系マイコトキシンおよび	ション測定装置による方法163
ゼアラレノン産生性試験122	1.4.3 γ線··············166
1.2.2.4 環境病原真菌試験法124	(1) γ線スペクトロメトリーによる方法166
1) クリプトコックス・ネオフォルマンス124	1.4.4 測定値の統計的取り扱い173
(1) 分離培養法124	(1) 計数値データの統計処理173
(2) 同定法124	(2) 検出下限値174
(3) 変種の鑑別124	
(4) 血清型別124	2 飲食物試験法
1.2.3 原 虫125	2 飲食物試験法177
1.2.3.1 環境病原原虫試験法125	2.1 食品成分試験法 ·······179
1)クリプトスポリジウムおよびジアルジア…125	2.1.1 無機成分179
(1) 試料の採取および濃縮125	2.1.1.1 水分および灰分179
(2) 免疫磁気ビーズによるクリプトスポリ	1) 水 分179
ジウムオーシストおよびジアルジアシ	(1) 加熱乾燥法179
ストの捕捉125	(2) 蒸留法による定量181
(3) クリプトスポリジウムオーシストおよ	(3) カール・フィッシャー法による定量181
びジアルジアシストを捕捉した免疫磁	2) 灰 分
気ビーズからのオーシスト/シストの	3) 水分活性
解離125	(1) グラフ挿入法·······186
(4) オーシスト/シストの蛍光染色と検鏡・	2.1.1.2 無機物質試料の調製法187
計数126	1) 乾式分解187
1.2.4 ウイルス128	2) 湿式分解188
1.2.4.1 水中ウイルス試験法128	(1) 硫硝酸・過塩素酸による分解188
1)濃縮法128	(2) 硝酸・過塩素酸による分解188
2)検出法129	2.1.1.3 一斉分析法189
(1) 細胞の継代培養129	1) ICP 発光分光分析法による定量 ······189
(2) ウイルスの分離130	2.1.1.4 各個試験190
(3) ウイルスの同定131	1) ナトリウム190
(4) プラック形成法によるウイルスの定量…132	(1) 原子吸光光度法による定量190
1.2.4.2 ノロウイルス試験法133	2) カリウム190
(1) 検体材料からのウイルスの部分精製と	(1) 原子吸光光度法による定量190
RNA の抽出 ······134	3) マグネシウム190
(2) ワン・ステップ RT-PCR 法によるノロ	(1) 原子吸光光度法による定量190
ウイルスの検出135	4) カルシウム190
	(1) 原子吸光光度法による定量190
1.3 遺伝毒性試験法	5) 鉄
1.3.1 微生物を用いる試験138	(1) 原子吸光光度法による定量191
1) 細菌を用いる復帰突然変異試験140	6) 銅
1.3.2 ほ乳類培養細胞を用いる試験144	(1) 原子吸光光度法による定量191
1.3.2 は孔頬与食和胞を用いる試験144 1) 染色体異常試験145	7) 亜 鉛191
2) マウスリンフォーマ TK 試験(MLA) ······149	(1) 原子吸光光度法による定量191
1.3.3 げっ歯類を用いる試験153	8) リン191
(1) げっ歯類を用いる小核試験154	(1) モリブデン酸による定量191
1/ + 101- 1-101	2.1.2 窒素化合物192
1.4 放射能試験法 159	2.1.2.1 総窒素および粗タンパク質192
1.4.1 α線 ······159	(1) セミミクロケルダール法による定量192
(1) シリコーン半導体検出器計数装置による	2.1.2.2 アミノ酸194
方法159	(1) アミノ酸分析計による定性および定量…194
1.4.2 β線······161	2.1.2.3 特殊窒素化合物197

1) 揮発性窒素197	1) 試料の採取228
(1) 拡散法による定量・・・・・・197	2) 試料の調製228
2) アンモニア性窒素198	3) 採取した試料および調製した試料の保存…228
(1) 比色定量 ······198	2.1.6.2 脂溶性ビタミンの理化学的試験228
3) 不揮発性腐敗アミン199	1) ビタミン A228
(1) 高速液体クロマトグラフィーによる	(1) 高速液体クロマトグラフィーによる
定量200	定量228
2.1.3 炭水化物201	2) β-カロテン ······230
2.1.3.1 糖 類201	(1) 高速液体クロマトグラフィーによる
1) 単糖類・二糖類および糖アルコール類201	定量230
(1) 高速液体クロマトグラフィーによる	3) ビタミン D232
定性および定量201	(1) 高速液体クロマトグラフィーによる
(2) 酵素法によるグルコース, フルクトース	定量232
およびスクロースの定量204	4) ビタミン E234
2) 水溶性全糖,グリコーゲンおよび不溶性	(1) 高速液体クロマトグラフィーによる
全糖206	定量235
(1) アントロン硫酸法による定量206	5) ビタミン K236
2.1.3.2 デンプン208	(1) 高速液体クロマトグラフィーによる
1) デンプン208	定量237
(1) 塩酸処理法による定量208	2.1.6.3 水溶性ビタミンの理化学的試験239
(2) ジアスターゼおよび塩酸処理法による	1) ビタミン B ₁ 239
定量209	(1) 高速液体クロマトグラフィーによる
2) デンプンの α 化度 ······210	定量240
2.1.3.3 ペントザンおよびペントース212	2) ビタミン B ₂ ·······243
(1) オルシンによる比色定量212	(1) 高速液体クロマトグラフィーによる
2.1.3.4 食物繊維212	定量243
(1) 酵素-重量法による定量212	3) ビタミン C244
2.1.4 脂 質214	(1) 総ビタミン C の高速液体クロマトグラ
2.1.4.1 粗脂肪214	フィーによる定量245
(1) ジエチルエーテル抽出法による定量214	(2) 還元型ビタミン C の高速液体クロマト
(2) 酸分解法による定量215	グラフィーによる定量246
(3) 有機溶媒混液抽出法による定量216	2.1.6.4 微生物学的試験248
2.1.4.2 化学的試験217	1) 一般定量操作法249
1) 脂肪酸217	2) ビタミン B ₆ ·······251
(1) ガスクロマトグラフィーによる定性	3) ニコチン酸およびニコチンアミド252
および定量217	4) パントテン酸253
2) コレステロール218	5) 葉 酸254
(1) ガスクロマトグラフィーによる定量218	6) ビタミン B ₁₂ (コバラミン類) ······255
2.1.4.3 変質試験220	7) コリン256
1) 過酸化物価221	8) ビオチン257
2) カルボニル価222	2.1.7 特殊成分258
(1) 2,4-ジニトロフェニルヒドラジン・	1) ヘム鉄258
ブタノール法222	(1) 吸光光度法による定量259
(2) 2,4-ジニトロフェニルヒドラジン・	2) 難消化性オリゴ糖260
ベンゼン法223	(1) 高速液体クロマトグラフィーによる
3) 酸 価223	定性および定量260
4) チオバルビツール酸試験224	3) タンパク質性アレルゲン262
2.1.5 エネルギーの計算225	
2.1.5.1 炭水化物225	2.2 天然有毒物質試験法265
2.1.5.2 エネルギー226	2.2.1 試料の採取および前処理265
2.1.6 ビタミン 227	2.2.2 植物性自然毒265
2.1.6.1 試料の採取および調製法227	1) サイカシン265

(1) ボフカロコレガニコン、にトフ合格 900	6) パツリン293
(1) ガスクロマトグラフィーによる定性266	
2) シアン化合物・・・・・・267	(1) 高速液体クロマトグラフィーによる
(1) 酵素微量拡散法による定量267	定性および定量293
(2) ガスクロマトグラフィーによる定量270	2.2.4 動物性自然毒294
3) α -ソラニンおよび α -チャコニン272	1) フグ毒294
(1) 高速液体クロマトグラフィーによる	(1) マウス単位法294
定性および定量272	2) 麻ひ性貝毒301
4) トロパン系アルカロイド(アトロピン	(1) マウス単位法301
およびスコポラミン)273	3) 下痢性貝毒306
(1) 薄層クロマトグラフィーによる定性273	(1) マウス単位法306
(2) ガスクロマトグラフィーによる定性	4) その他の貝毒309
および定量274	2.2.5 毒キノコ類309
5) 麦角アルカロイド275	(1) 日本産毒キノコの種類310
(1) 薄層クロマトグラフィーによる定性	(2) 同定試験310
および定量275	(3) 毒キノコの分類各論311
6) フェオホルバイド a およびピロフェオ	
ホルバイド a277	2.3 食品添加物試験法 317
(1) 薄層クロマトグラフィーによる定性	2.3.1 保存料317
および定量277	1) 安息香酸,ソルビン酸,デヒドロ酢酸
(2) 高速液体クロマトグラフィーによる	およびパラオキシ安息香酸エステル類318
定性および定量278	(1) 高速液体クロマトグラフィーによる
2.2.3 カビ毒279	定性および定量318
1) 系統的試験279	2) パラオキシ安息香酸エステル類319
(1) 薄層クロマトグラフィーによる定性	(1) 溶媒抽出-高速液体クロマトグラフィー
および定量279	による定性および定量319
2) アフラトキシン282	3) ナタマイシン321
(1) 高速液体クロマトグラフィーによる	(1) 高速液体クロマトグラフィーによる
定性および定量282	定性および定量321
(2) 高速液体クロマトグラフィー/質量分析	4) プロピオン酸323
法による定性283	(1) 高速液体クロマトグラフィーによる
3) ステリグマトシスチン284	定性および定量323
(1) 薄層クロマトグラフィーによる定性	(2) ガスクロマトグラフィーによる定性
および定量284	および定量324
4) フザリウムマイコトキシン286	2.3.2 防カビ剤326
(1) 高速液体クロマトグラフィーによるデ	1) オルトフェニルフェノール, ジフェニル
オキシニバレノールの定性および定量…288	およびチアベンダゾール326
(2) 高速液体クロマトグラフィー/質量分析	(1) 高速液体クロマトグラフィーによる
法によるデオキシニバレノールおよび	定性および定量327
ニバレノールの定性および確認288	2) イマザリル328
(3) 高速液体クロマトグラフィーによるゼア	(1) 高速液体クロマトグラフィーによる
ラレノンの定性および定量289	定性および定量328
(4) ガスクロマトグラフィーによるトリコテ	2.3.3 殺菌料329
セン系マイコトキシン(type B)の定性	1) 過酸化水素330
および定量·······289	(1) 硫酸チタンによる定性330
(5) ガスクロマトグラフィー/質量分析法に	(2) 酸素電極法による定量・・・・・・・・330
よるフザリウムマイコトキシンの定性・	2.3.4 品質保持剤333
定量および確認290	1) プロピレングリコール······333
(6) 高速液体クロマトグラフィーによるフモ	(1) ガスクロマトグラフィーによる定性
ニシン B_1 および B_2 の定性および定量…290	および定量333
5) オクラトキシン292	2.3.5 酸化防止剤 ·······334
(1) 高速液体クロマトグラフィーによる	1) BHA, BHT, 没食子酸プロピル(PG), ND
定性および定量292	GA, 2, 4, 5-トリヒドロキシブチロフェノン
足山40g0 疋里	U.A., 4, 5, 5 アソヒドロコマノノロノエノマ

(THBP), tert-ブチルヒドロキノン(TBHQ),	7) ズルチン365
没食子酸オクチル (OG),没食子酸ラウリ	(1) 薄層クロマトグラフィーによる定性365
ル (DG) および 4-ヒドロキシメチル-2, 6-	(2) 高速液体クロマトグラフィーによる
ジ <i>-tert-</i> ブチルフェノール (HMBP)334	定性および定量365
(1) 高速液体クロマトグラフィーによる	(3) 高速液体クロマトグラフィー/質量分析
定性および定量334	法による定性366
2) エチレンジアミン四酢酸およびその塩類	8) 糖アルコール367
337	(1) イオンクロマトグラフィーによる定性
(1) 高速液体クロマトグラフィーによる	および定量367
定性および定量・・・・・・337	2.3.9 着色料370
3) エトキシキン339	1) 酸性タール色素370
(1) 高速液体クロマトグラフィーによる	(1) 薄層クロマトグラフィーによる定性370
定性および定量・・・・・・339	2) 天然色素381
2.3.6 漂白剤340	(1) 薄層クロマトグラフィーによる定性381
1) 亜硫酸・次亜硫酸およびこれらの塩類340	(a) (b) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
(1) ヨウ素酸カリウム・デンプン紙による	2.4 食品汚染物試験法 397
定性法340	2.4.1 無機化合物397
(2) 通気蒸留-アルカリ滴定法および通気	2.4.1.1 試料の採取および前処理399
蒸留-比色法による定量341	2.4.1.2 試験溶液の調製402
(3) 通気蒸留-高速液体クロマトグラフィー	1) 湿式灰化法404
による定量345	(1) 硫酸-硝酸法404
2.3.7 発色剤347	(2) 硫酸-硝酸還流法405
1) 亜硝酸347	(3) 硝酸-過酸化水素法406
(1) ジアゾ化法による定量347	(4) ニッケルイオン添加硫酸-硝酸-過塩素酸
2) 硝 酸349	法406
(1) 高速液体クロマトグラフィーによる	(5) 硝酸-過塩素酸法406
定性および定量349	2) 乾式灰化法407
2.3.8 甘味料350	(1) 一般的な乾式灰化法(無添加・電気炉法)
1) アスパルテーム352	407
(1) 高速液体クロマトグラフィーによる	(2) 酸化マグネシウム添加による乾式灰化法
定性および定量352	(酸化マグネシウム添加・電気炉法)408
2) アセスルファムカリウム354	(3) 酸化カルシウム添加による乾式灰化法
(1) 高速液体クロマトグラフィーによる	(酸化カルシウム添加・電気炉法)409
定性および定量354	(4) 低温灰化法409
3) グリチルリチン酸356	(5) 水酸化ナトリウム添加による乾式灰化法
(1) 高速液体クロマトグラフィーによる	(水酸化ナトリウム添加・電気炉法)411
定性および定量356	(6) 炭酸ナトリウム添加による乾式灰化法
4) サイクラミン酸358	(炭酸ナトリウム添加・電気炉法)411
(1) 高速液体クロマトグラフィーによる	2.4.1.3 一斉分析法411
定性および定量358	(1) ICP 発光分光分析法による定量411
(2) ガスクロマトグラフィー/質量分析法に	2.4.1.4 各個試験412
よる定性359	1) バナジウム412
(3) 高速液体クロマトグラフィー/質量分析	(1) 電気加熱原子吸光光度法による定量413
法による定性360	2) クロム413
5) サッカリンおよびサッカリンナトリウム…361	(1) 原子吸光光度法による定量414
(1) 高速液体クロマトグラフィーによる	3) 銅415
定性および定量361	(1) 原子吸光光度法による定量415
6) スクラロース362	4) 亜 鉛415
(1) 高速液体クロマトグラフィーによる	(1) 原子吸光光度法による定量415
定性および定量362	5) カドミウム417
(2) イオンクロマトグラフィーによる定性	(1) 原子吸光光度法による定量417
および定量364	6) 水 銀419

(1) 還元気化原子吸光光度法による定量421	(1) 高速液体クロマトグラフィーによる
(2) 金アマルガム原子吸光光度法による	定性および定量473
定量422	6) ピレスロイド系農薬476
7) ス ズ423	(1) ガスクロマトグラフィーによる定性
(1) 原子吸光光度法による定量423	および定量476
8) 鉛425	7)臭化メチル480
(1) 原子吸光光度法による定量425	(1) ガスクロマトグラフィーによる定性
9) アンチモン426	および定量480
(1) 原子吸光光度法による定量427	8) クロルピクリン482
10) ヒ 素428	(1) ガスクロマトグラフィーによる定性
(1) 水素化物原子吸光光度法による定量430	および定量482
(2) 電気加熱原子吸光光度法による定量431	2.4.2.3 動物用医薬品482
11) セレン431	1)合成抗菌剤482
(1) 蛍光光度測定法による定量433	(1) 高速液体クロマトグラフィーによる
12) ホウ酸およびその塩類434	定性および定量482
(1) クルクマ試験紙による定性435	2) 抗生物質489
(2) クルクミンによる定量435	(1) バイオアッセイによるスクリーニング
13) フッ素436	試験489
(1) ランタン・アリザリンコンプレクソン法	2.4.2.4 その他491
による定量・・・・・・437	1) ホルムアルデヒド······491
14) 臭 素438	(1) AHMT 法による定量 ······492
(1) ガスクロマトグラフィーによる定性	2) メチル水銀493
および定量438	(1) ガスクロマトグラフィーによる定性
2.4.2 有機化合物440	および定量493
2.4.2.1 試料の採取および前処理440	3) 有機スズ化合物〔ジブチルスズ(DBT),
1) 試料の採取・・・・・・・・・・440	トリブチルスズ (TBT), ジフェニルスズ
(1) 農作物・・・・・・・・・・440	(DPT)およびトリフェニルスズ(TPT)〕…496
(2) 水産物・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	(1) ガスクロマトグラフィー/質量分析法
(3) 獣鳥肉・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	による定性および定量496
2) 前処理441	4) プラスチック可塑剤・・・・・・・・・・・・498
(1) 農作物441	(1) ガスクロマトグラフィーによる定性
(2) 水産物・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	および定量・・・・・・・・・・・・・・・・・・498
(3) 獣鳥肉・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	(2) ガスクロマトグラフィー/質量分析法
2.4.2.2 農 薬443	による定性および定量504
1) 一斉分析法443	5) ポリ塩化ビフェニル(PCB) ······506
(1) ガスクロマトグラフィー/質量分析法	(1) ガスクロマトグラフィー/質量分析法
による定性および定量443	による定性および定量511
(2) 高速液体クロマトグラフィー/質量分析法	6) ダイオキシン類(ポリ塩化ジベンゾ- p -ジ
による定性および定量447	オキシンおよびポリ塩化ジベンゾフラン)
2) 有機塩素系農薬451	およびコプラナー PCB516
(1) ガスクロマトグラフィーによる定性	(1) ガスクロマトグラフィー/質量分析法
および定量451	による定量521
3) 有機リン系農薬459	7) ベンゾ[α]ピレン ······529
(1) ガスクロマトグラフィーによる定性	(1) 高速液体クロマトグラフィーによる
および定量459	定量
4) カルバメート系農薬463	8) ポリ臭素化ジフェニルエーテル(PBDEs)
(1) ガスクロマトグラフィーによる定性	530
および定量463	(1) ガスクロマトグラフィー/質量分析法
(2) N-メチルカルバメート系農薬の高速液	による定性および定量532
体クロマトグラフィーによる定性およ	2.4.3 異 物
び定量468	2.4.3.1 異物検査に用いる器具および試薬 ·····537
5) ジチオカルバメート系農薬471	1) 器 具

2) 試 薬539	(1) β線測定による定量 ······566
2.4.3.2 試料の採取および前処理540	2) 農作物・海産物567
1) 試料の採取540	(1) β線測定による定量 ······567
2) 試料の前処理540	2.5.2 カリウム 40 ⁽⁴⁰ K)568
(1) パンクレアチン溶液による消化法540	1) 飲料水
2.4.3.3 異物の分離・捕集法541	(1) γ 線測定による定量 ······568
1) 篩過法	2) 農作物・海産物・・・・・・・・・・・569
2) 静置法	(1) γ 線測定による定量 ·······569
3) ろ過法	2.5.3 コバルト 60 (⁶⁰ Co) ·························569
4) 沈降法	1) 農作物・海産物・・・・・・・・・569
	1) 戻行が・海座初・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5) 浮上法(ワイルドマンフラスコによる 捕集法)543	
	2.5.4 ストロンチウム 90 (⁹⁰ Sr) ······570
2.4.3.4 異物の鑑別同定法544	1) 飲料水
1) 基本的な異物鑑別の進め方544	(1) β線測定による定量 ······570
(1) 情報収集・・・・・・544	2) 牛 乳
(2) 形状などの観察544	(1) β線測定による定量 ······572
(3) 機器分析544	3) 農作物・海産物573
(4) 物理・化学・生物学的試験544	(1) β線測定による定量 ······573
2) 昆虫類545	2.5.5 ヨウ素 131(¹³¹ I) ······573
3) ダニ類545	1) 飲料水574
4) 動物ふん545	(1) γ 線測定による定量 ······574
(1) ネズミなどのふん545	2) 牛 乳574
(2) 牛馬のふん546	(1) β線測定による定量 ······574
5) 人獣などの毛髪547	(2) γ 線測定による定量 ······575
(1) 試料の採取547	3) 農作物・海産物575
(2) 検査法	(1) γ 線測定による定量 ······575
6) 植物性異物553	2.5.6 セシウム 137 (137Cs)575
(1) 真菌(カビ・酵母類), きのこの試験553	1) 飲料水576
(2) 草本植物554	(1) γ 線測定による定量 ······576
(3) 木片・紙554	2) 牛 乳
(4) デンプン554	(1) γ 線測定による定量 ······576
7) 鉱物性異物554	3) 農作物・海産物576
(1) 金属片554	(1) γ 線測定による定量 ······576
(2) 土 砂555	2.5.7 ラドン 222 (222Rn) ······576
(3) ガラス・陶磁器・コンクリート片555	1) 飲料水577
8) プラスチック・ゴムおよび繊維類556	(1) α 線・β 線測定による定量(低バック
9) 食品成分由来の結晶558	グラウンド液体シンチレーション計数
(1) ストラバイト558	装置による方法)577
(2) 食 塩558	2.5.8 ラジウム 226(²²⁶ Ra) ······580
(3) 酒石酸塩558	1) 飲料水581
(4) シュウ酸塩559	(1) α 線・β 線測定による定量(低バック
10) 石油類559	グラウンド液体シンチレーション計数
(1) ガスクロマトグラフィー/質量分析法	装置による方法)581
による定性559	(2) γ 線測定による定量 ······583
11) プロチオホスおよびトルクロホスメチル	2) 農作物・海産物584
分解物562	(1) α線・β線測定による定量(低バック
(1) ガスクロマトグラフィー/質量分析法	グラウンド液体シンチレーション計数
による定性および定量562	装置による方法)584
	2.5.9 ウラン(U) ······584
2.5 放射性物質試験法	1) 飲料水585
2.5.1 トリチウム(³H) ······566	(1) ICP /質量分析法による定量 ······585
1) 飲料水	2) 牛 乳585

(1) ICP/質量分析法による定量 ······585	(1) ガスクロマトグラフィーによる定量618
3) 農作物・海産物586	9) トリエチルアミンおよびトリブチルアミン
(1) ICP/質量分析法による定量 ······586	619
2.5.10 プルトニウム(Pu)586	(1) ガスクロマトグラフィーによる定性
1) 飲料水586	および定量619
(1) α 線測定による定量 ······586	10) ビスフェノール A, フェノール, 4-tert-
(2) ICP/質量分析法による定量588	ブチルフェノールおよびジフェニルカー
2) 牛 乳589	ボネート621
(1) α 線測定による定量 ······589	(1) 高速液体クロマトグラフィーによる
(2) ICP/質量分析法による定量 ······589	定性および定量621
3) 農作物・海産物589	11) 有機溶剤622
(1) α 線測定による定量 ······589	(1) ガスクロマトグラフィーによる定性
(2) ICP/質量分析法による定量 ······590	および定量622
	3.1.1.3 溶出試験法624
2 件注印口钟盼汁	1) 試料表面積の測定624
3 生活用品試験法591	(1) 寸法計測による算出法624
3.1 器具・容器包装および玩具試験法593	(2) ビーズ付着法624
3.1.1 プラスチック製品593	2) 溶出液の調製624
3.1.1.1 材質判別法593	3) 金属類626
1) 簡易判別法596	(1) 重金属の硫化ナトリウム法による定性…626
2)赤外吸収スペクトル法598	(2) アンチモンおよびゲルマニウムの
3.1.1.2 材質試験法602	ICP/質量分析法による定量626
1) 金属類602	4) 過マンガン酸カリウム消費量627
(1) カドミウム, 鉛およびバリウムの原子	5) 蒸発残留物627
吸光光度法および ICP 発光分光分析法	6) 全有機炭素(TOC)量628
による定量602	7) 着色料629
2) アクリロニトリル603	8) エピクロルヒドリン629
(1) ガスクロマトグラフィーによる定量603	(1) ガスクロマトグラフィー/質量分析法
3) アセトアルデヒドおよびホルムアルデヒド	による定性および定量629
603	9) カプロラクタム630
(1) 高速液体クロマトグラフィーによる	(1) ガスクロマトグラフィーによる定性
定性および定量603	および定量630
4) 塩化ビニルおよび塩化ビニリデン605	10)4,4′-ジクロロジフェニルスルホンおよび
(1) ガスクロマトグラフィー/質量分析法	4,4'-ジヒドロキシジフェニルスルホン …631
による定性および定量605	(1) 高速液体クロマトグラフィーによる
5) 可塑剤607	定性および定量631
(1) 一般可塑剤のガスクロマトグラフィー	11) 総乳酸632
およびガスクロマトグラフィー/質量	(1) 高速液体クロマトグラフィーによる
分析法による定性および定量607	定性および定量632
(2) クレゾールリン酸エステルの高速液体	12) フェノール633
クロマトグラフィーによる定性および	(1) 4-アミノアンチピリン法による定量633
定量609	13) ホルムアルデヒド634
6) 酸化防止剤および紫外線吸収剤610	(1) アセチルアセトン法による定量634
(1) 高速液体クロマトグラフィーによる	14) メタクリル酸メチル634
定性および定量611	(1) ガスクロマトグラフィーによる定性
(2) ガスクロマトグラフィー/質量分析法	および定量634
による定性および定量613	15) メラミン635
7)ジブチルスズ化合物616	(1) 高速液体クロマトグラフィーによる
(1) 薄層クロマトグラフィーによる定性616	定性および定量635
(2) ガスクロマトグラフィー/質量分析法	3.1.2 セラミック製品636
による定性および定量616	3.1.2.1 溶出試験法636
8) スチレンなどの揮発性物質618	1) 試験溶液の調製636

a) A 🖂 1977	1-1-484
2) 金属類	および定量655
(1) 原子吸光光度法および ICP 発光分光	6) フェノール・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
分析法による定量637	(1) 4-アミノアンチピリン法による定量658
3) アルカリ溶出量638	7) ホルムアルデヒド・・・・・・・658
3.1.3 金属製品639	(1) アセチルアセトン法による定量658
3.1.3.1 材質試験法639	3.1.5 天然素材およびその加工品658
1) 金属類639	3.1.5.1 材質判別法658
(1) 原子吸光光度法および ICP 発光分光	1) 耐硫酸性試験658
分析法による定量640	2) ヨウ素溶液着色試験658
3.1.3.2 溶出試験法640	3) 赤外吸収スペクトル法659
1) 試験溶液の調製640	3.1.5.2 材質試験法659
(1) 金属缶640	1) ポリ塩化ビフェニル(PCB) ······659
(2) その他の金属製品641	(1) ガスクロマトグラフィー/質量分析法
2) 金属類641	による定性および定量659
(1) 原子吸光光度法および ICP 発光分光	3.1.5.3 溶出試験法659
分析法による定量641	1) 試験溶液の調製659
(2) ヒ素の ICP/質量分析法による定量642	2) 金属類659
3) 蒸発残留物およびクロロホルム可溶物642	(1) 重金属の硫化ナトリウム法による定性…659
4)エピクロルヒドリン,塩化ビニル,フェ	(2) 原子吸光光度法および ICP 発光分光
ノールおよびホルムアルデヒド642	分析法による定量659
(1) エピクロルヒドリン643	3) 蛍光物質659
(2) 塩化ビニル・・・・・・・・・・・・・・・・・・・・・・・・・643	(1) 紫外線ランプによる定性660
(3) フェノール・・・・・・・・・・643	(2) 染色法による定性660
(4) ホルムアルデヒド643	4) 蒸発残留物660
3.1.4 ゴム製品643	5) 着色料660
3.1.4.1 材質判別法650	6) 二酸化硫黄および亜硫酸塩類660
1) 簡易判別法650	(1) イオンクロマトグラフィーまたは高速
2) 赤外吸収スペクトル法651	液体クロマトグラフィーによる定量660
3) 熱分解ガスクロマトグラフィー651	7) 防カビ剤662
3.1.4.2 材質試験法651	(1) イマザリルの高速液体クロマトグラ
1) 金属類651	フィーによる定性および定量662
(1) 原子吸光光度法および ICP 発光分光	(2) オルトフェニルフェノール, チアベン
分析法による定量651	ダゾールおよびジフェニルの高速液体
2) 酸化防止剤653	クロマトグラフィーによる定性および
(1) ガスクロマトグラフィー/質量分析法	定量663
による定性および定量653	8) ホルムアルデヒド663
3) 2-メルカプトイミダゾリン653	(1) アセチルアセトン法による定量663
(1) 薄層クロマトグラフィーによる定性653	3.1.6 玩 具664
3.1.4.3 溶出試験法654	3.1.6.1 材質判別法664
1) 試験溶液の調製654	3.1.6.2 材質試験法664
(1) 一般用ゴム製品・・・・・・・・・・654	1) 金属類664
(2) ほ乳器具・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	(1) カドミウムおよび鉛の原子吸光光度法
2) 金属類654	および ICP 発光分光分析法による定量
(1) 重金属の硫化ナトリウム法による定性	664
······································	(2) ヒ素の原子吸光光度法および ICP 発光
(2) ヒ素の ICP/質量分析法による定量654	分光分析法による定量665
(3) 亜鉛の原子吸光光度法および ICP 発光	2) 塩化ビニル665
分光分析法による定量654	(1) ガスクロマトグラフィー/質量分析法
ガルガが伝による足量	(1) カスクロマドクラフィー/ 頁里方列 伝 による定性および定量665
4) 蒸発残留物	3) 可塑剤665
4) <u>条</u> 元代音初····································	(1) フタル酸ジ(2-エチルヘキシル)およびフ
5) Nトロフ/ミン類 (1) ガスクロマトグラフィーによる定性	(1) ノタル酸ン(Z-エデルヘキンル) ねょび ノ タル酸ジイソノニルの完性および完量…665
ロニル ヘフ ロ キ ヒフ フ ノ 4 ー に ま る 止 ほ	ı フルBタンコフノールVIP(まわょこん B'''NN')

4) 酸化防止剤667	(1) 高速液体クロマトグラフィーによる
(1) ガスクロマトグラフィー/質量分析法	定性および定量677
による定性および定量667	5) オルトフェニルフェノール······678
5) ジブチルスズ化合物667	(1) 高速液体クロマトグラフィーによる
(1) ガスクロマトグラフィー/質量分析法	定性および定量678
による定性および定量667	6) グルコン酸クロルヘキシジン·············679
6) スチレンなどの揮発性物質667	(1) 高速液体クロマトグラフィーによる
(1) ガスクロマトグラフィーによる定量667	定性および定量679
7) 有機溶剤667	7) クロルクレゾール680
(1) ガスクロマトグラフィーによる定性	(1) 高速液体クロマトグラフィーによる
および定量667	定性および定量680
3.1.6.3 溶出試験法668	8) クロルフェネシン····································
1) 溶出液の調製668	(1) 高速液体クロマトグラフィーによる
2) 金属類668	定性および定量681
(1) 重金属の硫化ナトリウム法による定性…668	9) サリチル酸フェニル681
(2) カドミウムの原子吸光光度法および	(1) 高速液体クロマトグラフィーによる
ICP 発光分光分析法による定量669	定性および定量681
(3) 水銀の原子吸光光度法および ICP 発光	10) ジクロロフェン, トリクロサン, トリブ
分光分析法による定量669	ロムサラン, ビチオノールおよびヘキサ
(4) ヒ素の ICP/質量分析法による定量669	クロロフェン682
3) 過マンガン酸カリウム消費量669	(1) 高速液体クロマトグラフィーによる
4) 蒸発残留物	定性および定量682
5) 全有機炭素 (TOC)量669	11) 3,4,4'-トリクロロカルバニリドおよび
6) 着色料670	ハロカルバン683
7) フェノール670	(1) 高速液体クロマトグラフィーによる
(1) 4-アミノアンチピリン法による定量670	定性および定量683
8) ホルムアルデヒド670	12) ピリチオン亜鉛684
(1) アセチルアセトン法による定量670	(1) 高速液体クロマトグラフィーによる
3.1.6.4 塗膜および金属製アクセサリー玩具の	定性および定量684
試験法670	13) フェノキシエタノール685
1) 塗 膜670	(1) 高速液体クロマトグラフィーによる
(1) カドミウム,鉛およびヒ素の原子吸光	定性および定量685
光度法および ICP 発光分光分析法によ	14)ホウ酸685
る定量670	(1) クルクマ試験紙による定性685
2) 金属製アクセサリー玩具671	(2) クルクミンによる定量686
(1) 鉛の原子吸光光度法および ICP 発光	15) ホルムアルデヒド686
分光分析法による定量671	(1) アセチルアセトン法による定量686
	(2) アセチルアセトンポストカラム誘導体
3.2 香粧品試験法673	化検出法を用いる高速液体クロマトグ
3.2.1 殺菌防腐剤674	ラフィーによる定性および定量687
1) 安息香酸, サリチル酸, ソルビン酸, デ	16) レゾルシン688
ヒドロ酢酸およびパラオキシ安息香酸エ	(1) 高速液体クロマトグラフィーによる
ステル類674	定性および定量688
(1) 高速液体クロマトグラフィーによる	3.2.2 紫外線吸収剤688
定性および定量674	1)オクチルトリアゾン689
2) 安息香酸ナトリウム676	(1) 高速液体クロマトグラフィーによる
(1) 高速液体クロマトグラフィーによる	定性および定量689
定性および定量676	2) オクトクリレン690
3) イソプロピルメチルフェノール676	(1) 高速液体クロマトグラフィーによる
(1) 高速液体クロマトグラフィーによる	定性および定量690
定性および定量676	3) サリチル酸オクチル690
4) 塩化ベンザルコニウム677	(1) 高速液体クロマトグラフィーによる

定性および定量690	(1) 高速液体クロマトグラフィーによる
4) 2-[4-(ジエチルアミノ)-2-ヒドロキシベ	定性および定量709
ンゾイル]安息香酸ヘキシルエステル691	3.2.8 香 料710
(1) 高速液体クロマトグラフィーによる	1) ベルガプテン710
定性および定量691	(1) 高速液体クロマトグラフィーによる
5) p-ジメチルアミノ安息香酸 2-エチルヘキ	定性および定量710
シル, 2-ヒドロキシ-4-メトキシベンゾフ	
ェノンおよびそのスルホン酸類, 4-tert-	4 TEM (+ = 1) EA '-1
4'-メトキシジベンゾイルメタン, <i>p</i> -メト	4 環境試験法 ₇₁₃
キシケイ皮酸 2-エトキシエチルおよび	4.1 水質試験法 ····································
p-メトキシケイ皮酸 2-エチルヘキシル …692	4.1.1 飲料水716
(1) 高速液体クロマトグラフィーによる	1) 水質試験の種類および試験項目716
定性および定量692	2) 試験の順序716
6) フェニルベンズイミダゾールスルホン酸…693	3) 試験の時期および回数716
(1) 高速液体クロマトグラフィーによる	4.1.1.1 環境調査717
定性および定量693	4.1.1.2 試料の採取および保存718
7) 2,2'-メチレンビス[6-(2 H ベンゾトリア	1) 理化学的試験用試料719
ゾール-2-イル)-4-(1,1,3,3-テトラメチ	(1) 採 水······719
ルブチル) フェノール]694	(2) 保存および使用719
(1) 高速液体クロマトグラフィーによる	2) 細菌試験用試料720
定性および定量694	(1) 採 水720
3.2.3 収れん剤694	(2) 貯蔵および運搬720
1) アラントイン	3) 生物試験用試料720
(1) 高速液体クロマトグラフィーによる	(1) 採取および保存720
定性および定量・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4.1.1.3 理化学的試験721
2) パラフェノールスルホン酸亜鉛695	1) 温 度721
(1) 高速液体クロマトグラフィーによる	2) 外 観722
定性および定量695 3.2.4 消炎剤696	3) 濁 度
3.2.4	(1) 標準系列透視比濁法······723 (2) 積分球式光電光度法·····724
1) クリテルリテン酸およびクリテルレテン酸696	4) 色 度725
(1) 高速液体クロマトグラフィーによる	5) 臭 気725
定性および定量696	6) 味726
 グリチルレチン酸ステアリル······697 	7) pH ······726
(1) 高速液体クロマトグラフィーによる	8) アルカリ度726
定性および定量697	(1) 総アルカリ度・・・・・・727
3.2.5 着色剤697	(2) フェノールフタレインアルカリ度727
1) カーボンブラック······697	(3) 炭酸水素アルカリ度, 炭酸アルカリ度
(1) ガスクロマトグラフィー/質量分析法によ	および水酸基アルカリ度727
るベンゾ[α]ピレンの定性および定量…697	9) 酸 度727
2) 酸化染毛剤698	(1) 総酸度728
(1) 薄層クロマトグラフィーによる定性698	(2) 鉱酸酸度728
3) タール色素699	10) 遊離炭酸728
(1) 薄層クロマトグラフィーによる定性699	(1) 酸度から求める方法729
(2) 高速液体クロマトグラフィーによる	(2) pH とアルカリ度から求める方法729
定性および定量707	11) 蒸発残留物730
3.2.6 フッ素化合物708	12) 硬 度730
1) フッ素708	(1) フレーム-原子吸光光度法による定量 …731
(1) イオン電極法による定量708	(2) ICP 発光分光分析法による定量 ·······731
3.2.7 ホルモン709	(3) イオンクロマトグラフィーによる定量…731
1) エストラジオールおよびエチニルエスト	(4) 滴定法732
ラジオール709	13) 過マンガン酸カリウム消費量733

14) ケイ酸734	33) マンガン756
(1) モリブデン酸による定量735	(1) フレームレス-原子吸光光度法による
15) アンモニア態窒素735	定量757
(1) インドフェノール法による定量736	(2) フレーム-原子吸光光度法による定量 …757
16) 亜硝酸態窒素736	(3) ICP 発光分光分析法による定量 ·······758
(1) イオンクロマトグラフィーによる定量…737	(4) ICP/質量分析法による定量 ······758
(2) ジアゾ化法による定量738	34) 鉄758
17) 硝酸態窒素738	(1) フレームレス-原子吸光光度法による
(1) イオンクロマトグラフィーによる定量…739	定量758
18) 総窒素739	(2) フレーム-原子吸光光度法による定量 …758
(1) カドミウム還元法による定量739	(3) ICP 発光分光分析法による定量759
(2) ヒドラジン還元法による定量740	(4) ICP/質量分析法による定量759
19) リン酸イオン741	35) ニッケル・・・・・759
(1) イオンクロマトグラフィーによる定量…741	(1) ICP/質量分析法による定量 ······759
(2) 原子吸光光度法による定量741	36) 銅759
20) 総リン742	(1) フレームレス-原子吸光光度法による
(1) 原子吸光光度法による定量742	定量760
21) 硫酸イオン·······742	(2) フレーム-原子吸光光度法による定量 …760
(1) イオンクロマトグラフィーによる定量…743	(3) ICP 発光分光分析法による定量760
22) ホウ素・・・・・・・743	(4) ICP/質量分析法による定量760
(1) ICP 発光分光分析法による定量 ·······743	37) 亜 鉛・・・・・・・760
(2) ICP/質量分析法による定量744	(1) フレームレス-原子吸光光度法による
23) フッ化物イオン745	定量760
(1) イオンクロマトグラフィーによる定量···746	(2) フレーム-原子吸光光度法による定量 …760
24) 塩化物イオン746	(3) ICP 発光分光分析法による定量760
(1) イオンクロマトグラフィーによる定量…746	(4) ICP/質量分析法による定量 ·······760
	38) カドミウム760
(2) 硝酸銀滴定法による定量・・・・・・・747 25) 残留塩素・・・・・・・747	
	(1) フレームレス-原子吸光光度法による 定量760
(1) ジエチル- <i>p</i> -フェニレンジアミン(DPD) 法による定量······748	
	(2) フレーム-原子吸光光度法による定量 …760 (2) IOD なおひおひおけによる定量 …760
26) 塩素要求量および塩素消費量749 27) 臭化物イオン751	(3) ICP 発光分光分析法による定量760
	(4) ICP/質量分析法による定量761 39) 水 銀761
(1) イオンクロマトグラフィーによる定量…752	(1) 還元気化/原子吸光光度法による定量 …761
28) シアン化合物・・・・・・・752	(1) 爆ル式化/原丁吸ルル及伝による定里 …701 40) アルミニウム761
(1) 遊離シアン·······752 29) ナトリウム······753	
	(1) フレームレス-原子吸光光度法による 定量761
(1) フレーム-原子吸光光度法による定量 …753	· -
(2) フレームレス-原子吸光光度法による 定量755	(2) ICP 発光分光分析法による定量 ·······761
, 3	(3) ICP/質量分析法による定量761 41) 鉛761
(3) ICP 発光分光分析法による定量 ·······755	
(4) イオンクロマトグラフィー(陽イオン)	(1) フレームレス-原子吸光光度法による 定量762
による定量755	· -
30) バリウム・・・・・・755	(2) ICP 発光分光分析法による定量 ·······762
(1) 原子吸光光度法による定量755	(3) ICP/質量分析法による定量762
31) クロム755	42) ヒ 素
(1) フレームレス-原子吸光光度法による	(1) 水素化物発生/ICP 発光分光分析法
定量755	による定量762
(2) フレーム-原子吸光光度法による定量 …756	(2) フレームレス-原子吸光光度法による
(3) ICP 発光分光分析法による定量 ·······756	定量
(4) ICP/質量分析法による定量 ······756	(3) ICP/質量分析法による定量 ··········762
32) モリブデン······756 (1) ICP/質量分析法による定量 ·····756	(4) 水素化物発生/原子吸光光度法による
(1) IOD/斑导公根が12 F 7 字导7EC	定量762

43) アンチモン763	(2) 高速液体クロマトグラフィー/質量分析
(1) 水素化物発生/原子吸光光度法による	法による定量796
定量763	58) ハロアセトニトリルおよび抱水クロラール
44) セレン764	801
(1) 水素化物発生/ICP 発光分光分析法	(1) ガスクロマトグラフィーによる定量802
による定量764	59) ハロ酢酸802
(2) フレームレス-原子吸光光度法による	(1) ガスクロマトグラフィー/質量分析法
定量765	およびガスクロマトグラフィーによる
(3) ICP/質量分析法による定量 ······765	定量803
(4) 水素化物発生/原子吸光光度法による	60) 非イオン界面活性剤805
定量765	(1) 固相抽出-吸光光度法よる定量805
45) ウラン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・765	61) フェノール類806
(1) ICP/質量分析法による定量 ······765	(1) 固相抽出–誘導体化–ガスクロマトグラ
46) アルデヒド類765	フィー/質量分析法による定量806
(1) 溶媒抽出-誘導体化-ガスクロマトグラ	62) ミクロシスチン808
フィー/質量分析法による定量765	(1) 高速液体クロマトグラフィーによる
47) 陰イオン界面活性剤767	定量810
(1) 固相抽出-高速液体クロマトグラフィー	63) 有機リン化合物811
による定量767	(1) ガスクロマトグラフィーによる定量812
48) 3-クロロ-4-(ジクロロメチル)-2(5 H)-	64) 多環芳香族炭化水素類(PAHs) ·······815
フラノン(MX)767	(1) ガスクロマトグラフィー/質量分析法
(1) ガスクロマトグラフィー/質量分析法	による定量817
による定量768	65) アルキルフェノール類およびビスフェ
49) 揮発性有機化合物770	ノール A·······818
(1) ガスクロマトグラフィー/質量分析法	(1) ガスクロマトグラフィー/質量分析法
による定量770	による定量818
50) クロルデン類777	66) フタル酸エステル類820
(1) ガスクロマトグラフィー/質量分析法	(1) ガスクロマトグラフィー/質量分析法
による定量778	による定性および定量821
51) ジブチルスズおよびトリブチルスズ779	67) エストラジオール類823
(1) ガスクロマトグラフィーによる定量779	(1) 液体クロマトグラフィー/タンデム型
52) 全有機炭素(TOC)779	質量分析法による定性および定量823
(1) 全有機炭素計測法による測定780	68) 1,4-ジオキサン825
53) 全有機ハロゲン化合物(TOX)781	(1) ガスクロマトグラフィー/質量分析法
(1) 燃焼電量滴定法による定量781	による定量825
54) 臭気物質782	69) 臭素酸826
(1) パージ・トラップ-ガスクロマトグラ	(1) イオンクロマトグラフィー/ポストカ
フィー/質量分析法による定量783	ラム吸光光度法による定量826
(2) 固相抽出-ガスクロマトグラフィー/	70) 亜塩素酸・塩素酸および二酸化塩素828
質量分析法による定量784	(1) イオンクロマトグラフィーによる定量…828
(3) ヘッドスペース-ガスクロマトグラ	4.1.1.4 細菌試験829
フィー/質量分析法による定量785	1) 一般細菌829
55) ダイオキシン類785	2) 大腸菌830
(1) ガスクロマトグラフィー/質量分析法	3) 従属栄養細菌831
による定量786	4.1.1.5 生物試験832
56) トリハロメタン生成能787	4.1.1.6 ウイルス試験836
(1) ガスクロマトグラフィー/質量分析法	4.1.1.7 変異原性試験836
およびガスクロマトグラフィーによる	(1) 前処理濃縮法836
定量787	(2) 細菌の復帰変異試験839
57) 農薬類789	4.1.1.8 原虫試験840
(1) ガスクロマトグラフィー/質量分析法	1)飲料水のクリプトスポリジウムおよび
による定量789	ジアルジア試験840

(1) 濃縮法840	1) 理化学的試験用試料858
(2) 精製法841	2) 細菌試験用試料859
(3) プレパラート作成法842	4.1.3.3 理化学的試験861
(4) 検鏡法843	1) 温 度861
4.1.2 公共浴用水845	2) 透視度861
4.1.2.1 環境調査846	3) 色相および色度861
1) プール水846	(1) 色 相861
(1) 検査当日の状況846	(2) 色 度861
(2) 施設の概要846	4) 臭 気862
2) 水泳場水847	5) pH ·····862
3) 公衆浴場水847	6) アルカリ度862
4.1.2.2 試料の採取847	7) 酸 度863
1) 採取場所847	8) 蒸発残留物,強熱残分および強熱減量863
2) 採取方法848	(1) 蒸発残留物863
3) 試料の処理848	(2) 強熱残分および強熱減量863
4.1.2.3 理化学的試験849	9) 浮遊物質および溶解性蒸発残留物863
1) 温 度849	(1) ガラスろ過法863
2) 外 観·····849	(2) ろ紙法864
3) 透視度849	10) 溶存酸素864
4) 濁 度······849	(1) 試料の採取法864
5) pH ·····849	(2) ウインクラー法866
6) 浮遊物質849	11) 生物化学的酸素要求量(BOD)867
7) 過マンガン酸カリウム消費量849	12) 化学的酸素要求量(COD) ······872
8) 化学的酸素要求量849	(1) 二クロム酸法による定量873
9) アンモニア性窒素849	(2) 過マンガン酸カリウム法による定量875
(1) 直接比色法による定量849	13) 窒素化合物877
(2) 蒸留法による定量849	(1) ケルダール性窒素の定量878
10) 残留塩素849	(2) 還元法による硝酸性窒素の定量878
11) 塩化物イオン850	(3) ジアゾ化法による亜硝酸性窒素および
(1) 硝酸銀滴定法による定量850	硝酸性窒素の定量879
12) 銅850	(4) アンモニア性窒素の定量880
13) 尿 素850	14) リン酸イオン880
(1) ジアセチルモノオキシムによる定量850	(1) 原子吸光光度法による定量880
14) 二酸化塩素および亜塩素酸851	15) 総リン880
(1) イオンクロマトグラフィーによる定量…851	(1) 原子吸光光度法による定量880
4.1.2.4 細菌試験851	16) 硫化物880
1) 一般細菌851	(1) ヨウ素法による定量881
2) 大腸菌851	(2) メチレンブルー法による定量882
(1) 特定酵素基質培地法851	17) 残留塩素883
3) 大腸菌群851	(1) ジエチル -p -フェニレンジアミン(DPD)
(1) 乳糖ブイヨン法851	法による定量885
(2) 特定酵素基質培地法851	(2) ヨウ素法による定量885
(3) デオキシコレート寒天培地法852	18) 塩素要求量および塩素消費量884
(4) メンブランフィルター法(M-FC 法) …852	19) 塩化物イオン884
(5) 疎水性格子付きメンブランフィルター	(1) 硝酸銀滴定法による定量884
法852	20) 陰イオン界面活性剤885
(6) BGLB 培地法 ······852	(1) 原子吸光光度法による定量885
4) レジオネラ853	21) 揮発性有機化合物885
4.1.2.5 ウイルス試験856	(1) ガスクロマトグラフィー/質量分析法
4.1.3 下水・汚水857	による定量885
4.1.3.1 環境調査857	(2) ガスクロマトグラフィーによる定量885
4.1.3.2 試料の採取857	22) ダイオキシン類885

(1) ガスクロマトグラフィー/質量分析法	17) 塩化物イオン900
による定量885	(1) 硝酸銀滴定法による定量900
23) トリハロメタン生成能885	18) シアン化合物900
(1) ガスクロマトグラフィー/質量分析法	(1) 遊離シアン900
およびガスクロマトグラフィーによる	(2) 総シアン902
定量885	19) クロム90;
24) 非イオン界面活性剤887	(1) 原子吸光光度法による定量90:
(1) テトラチオシアノコバルト(Ⅱ)酸による	(2) ジフェニルカルバジド法による定量904
定量	20) マンガン90!
	(1) 原子吸光光度法による定量905
(2) ガスクロマトグラフィーによる定量889	21) 鉄90:
4.1.3.4 細菌試験	
1) 一般細菌数	(1) 原子吸光光度法による定量90%
2) 大腸菌群	22) ニッケル・・・・・・90!
4.1.3.5 原虫試験	(1) 原子吸光光度法による定量909
1) 下水・汚水のクリプトスポリジウム	23) 銅905
およびジアルジア試験891	(1) 原子吸光光度法による定量90
(1) 濃縮・精製法891	24) 亜 鉛900
4.1.4 産業排水892	(1) 原子吸光光度法による定量900
4.1.4.1 環境調査893	25) カドミウム900
4.1.4.2 試料の採取および保存893	(1) 原子吸光光度法による定量900
1) 理化学的試験用試料894	26) 水 銀900
(1) 試料の採取方法894	(1) 原子吸光光度法による定量900
(2) 試料の前処理・保存894	27) ス ズ······900
2) 細菌試験用試料894	(1) SATP による定量 ······900
4.1.4.3 理化学的試験894	28) 鉛90%
1) 温 度894	(1) 原子吸光光度法による定量90%
2) 透視度895	29) アンチモン90%
3) pH ·····895	(1) 原子吸光光度法による定量90%
4) 蒸発残留物,強熱残分および強熱減量895	30) ヒ 素908
5) 浮遊物質および溶解性蒸発残留物895	(1) 原子吸光光度法による定量908
6) 溶存酸素(DO)	31) セレン908
7) 生物化学的酸素要求量(BOD) ······895	(1) 原子吸光光度法による定量908
8) 化学的酸素要求量(COD) ······896	32) 陰イオン界面活性剤908
9) アンモニア性窒素896	(1) カラム法による定量・・・・・・908
(1) インドフェノール法による定量896	33) 揮発性有機化合物・・・・・・・909
(2) 滴定法による定量・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	(1) ガスクロマトグラフィー/質量分析法 による定量90!
10) 硝酸性窒素および亜硝酸性窒素897	
(1) カドミウム還元法による定量898	34) ジブチルスズおよびトリブチルスズ909
11) 有機性窒素898	(1) ガスクロマトグラフィーによる定量909
(1) インドフェノール法による定量898	35) ダイオキシン類910
(2) 滴定法による定量・・・・・・899	(1) ガスクロマトグラフィー/質量分析法
12) 総窒素899	による定量910
(1) カドミウム還元法による定量899	36) 非イオン界面活性剤910
(2) ヒドラジン還元法による定量899	(1) テトラチオシアノコバルト(Ⅱ)酸による
13) リン酸イオン899	定量910
(1) 原子吸光光度法による定量899	(2) ガスクロマトグラフィーによる定量910
14) 総リン899	37) フェノール類910
(1) 原子吸光光度法による定量899	(1) 4-アミノアンチピリン法による定量916
15) 硫化物899	38) トリハロメタン生成能91:
(1) 滴定法による定量899	(1) ガスクロマトグラフィー/質量分析法
16) フッ化物イオン900	およびガスクロマトグラフィーによる
(1) イオンクロマトグラフィーによる完長…000	- 学 县01

39) ヘキサン抽出物質911	(1) ガスクロマトグラフィー/質量分析法
(1) 重量法による定量912	による定量950
40) ホルムアルデヒド913	17) クロム951
(1) AHMT 法による定量 ······913	(1) 酸溶出クロム951
41)メチル水銀914	(2) 総クロム953
(1) ガスクロマトグラフィーによる定量914	(3) 6 価クロム955
42) 1,4-ジオキサン915	18) マンガン955
(1) ガスクロマトグラフィー/質量分析法	(1) 原子吸光光度法による定量955
による定量915	19) 鉄956
4.1.4.4 細菌試験915	(1) 原子吸光光度法による定量956
1)一般細菌数915	20) ニッケル956
2) 大腸菌群915	(1) 原子吸光光度法による定量956
付 表916	21) 銅956
	(1) 原子吸光光度法による定量956
4.2 鉱泉試験法 931	22) 亜 鉛957
4.2.1 鉱泉の定義と試験項目931	(1) 原子吸光光度法による定量957
1) 鉱泉の定義931	23) カドミウム958
2) 鉱泉の分析試験933	(1) 原子吸光光度法による定量958
(1) 現地調査項目933	24) 総水銀958
(2) 現地試験項目934	(1) 原子吸光光度法による定量958
(3) 試料の現地処理934	(2) アルキル水銀および無機水銀の分別
(4) 試験項目934	定量959
	25) 鉛959
4.3 底質試験法 937	(1) 原子吸光光度法による定量959
4.3.1 環境調査937	26) ヒ 素960
4.3.2 試料の採取および処理法938	(1) 原子吸光光度法による定量960
1) 理化学的試験用試料938	4.3.4 生物試験960
(1) 試料採取場所および方法938	4.3.4.1 大型生物961
2) 生物試験用試料940	4.3.4.2 付着微生物961
3) 細菌試験用試料942	4.3.4.3 試験結果の表示962
4.3.3 理化学的試験942	1) 河川・湖沼962
1) 泥 温942	(1) 現存量962
2) 外 観942	(2) 生物指数962
3) 色 相942	(3) 水質汚濁階級962
4) 臭 気942	(4) 汚濁指数962
5) pH 942	(5) スコア値962
6) 乾燥減量942	2)海 域974
7) 強熱減量943	4.3.5 細菌試験977
8) 粒度分布943	1) 硫酸塩還元菌977
9)酸化還元電位944	(1) 改良 ISA 培地による定性および定量 …977
10) 化学的酸素要求量(COD)945	2) 放線菌978
(1) 過マンガン酸カリウムによる定量945	(1) スターチカゼイン寒天培地による定性
11) 総窒素	および定量978
(1) セミミクロケルダール法による定量946	4.4.55=+55->+
12) 総リン・・・・・・・947	4.4 空気試験法981
(1) モリブデン酸による定量947	4.4.1 試料採取法
13) 硫化物	4.4.1.1 ガス状物質 ··········987
14) 塩化物イオン949	1) 溶液吸収法······987 2) 容器による試料採取·····989
(1) 硝酸銀滴定法による定量······949 15) ポリ塩化ビフェニル(PCB) ·····949	(1) ステンレス容器(キャニスター)法989
(1) ガスクロマトグラフィーによる定量·····949	(1) ステンレス谷益(キャースター)法989 (2) 採気瓶法990
(1) カスクロマトクラフィーによる定重949 16) ダイオキシン類950	(3) 採気バッグ法990
10/ ノイタインマ級950	(a) 1小メレ・フラ 伝991

3) 捕集剤による乾式採取992	3) 湿 度1034
4) 冷却採取・濃縮法993	4) 風向および風速1034
5) 試料のガスクロマトグラフなどへの	5) 大気安定度1035
導入法993	6) 紫外線1037
(1) サーマルデソープション・コールドト	(1) 紫外線照度計による方法1037
ラップ法(TCT 法), あるいはクライオ	7)視 程1033
フォーカス法993	(1) 目測法1037
(2) 加熱脱着法993	8) 日 照1038
(3) 溶媒抽出法995	9) 日 射1039
6) 拡散法(パッシブ法)996	(1) 全天電気式日射計および直達電気式
4.4.1.2 粒子状物質997	日射計による方法103
1) 粒子状物質997	10) 天気および雨量103
(1) ハイボリウムエアーサンプラー法······998	4.4.3 粒子状物質(浮遊粉じん)1040
(2) ローボリウムエアーサンプラー法1000	1) 浮遊粒子状物質1040
(3) 円筒ろ紙法1002	(1) 重量法1047
(4) アンダーセンサンプラー法1004	(2) 散乱光法104.
2) 降下ばいじん1005	(3) β線吸収法 ·······1042
(1) ダストジャーによる採取1005	· ·
	2) 微小粒子状物質 (PM 2.5) ·······1044
4.4.1.3 試料容積の補正法および測定値の	(1) 重量法
表し方	(2) β線吸収法 ······1048
1) 採取試料容積の補正1006	(3) 振動素子法1048
2) 測定値の表し方1006	(4) 散乱光法1049
1.4.2 気象条件1006	3) アスベスト105(
4.4.2.1 室内環境1007	(1) 光学顕微鏡による計数法1051
1) 気 圧1007	(2) 分散染色法1054
2) 気 温1008	(3) 分析走査電子顕微鏡法(A-SEM 法) …1055
3) 気 湿1009	4.4.4 無機物質1058
(1) アスマン通風乾湿計による方法1009	1) マンガン, 鉄, コバルト, ニッケル, 銅,
(2) アウグスト乾湿計による方法1016	亜鉛、カドミウム、鉛、ベリリウム、バ
(3) 毛髪湿度計による方法1019	ナジウム,クロムおよびアンチモン1058
4) カタ冷却力1019	(1) ICP/質量分析法による定量1060
5) 気動(気流)1020	(2) 原子吸光光度法による定量106
(1) カタ温度計による方法1020	(3) ICP 発光分光分析法による定量 ·······1062
(2) 熱線風速計による方法1021	2) 水 銀1064
6) 感覚温度(実効温度)1021	(1) 乾式捕集・原子吸光光度法による
(1) 感覚温度図表を引用する方法1022	定量1064
(2) 快適図表を引用する方法1022	(2) 湿式捕集・原子吸光光度法による
(3) 熱輻射を補正した感覚温度を求める	定量1060
方法1023	3) セレン1060
7) 熱輻射(赤外線)1024	(1) 蛍光光度法による定量1060
(1) 黒球温度計(グローブサーモメーター)	(2) ICP/質量分析法による定量 ······1067
による方法1025	4) ヒ素(粒子状)1067
8) 照 度1025	(1) 水素化物発生/原子吸光光度法による
9) 臭 気1027	定量1068
(1) 臭気指数の測定1028	(2) 炭素管フレームレス原子吸光光度法
10) 換 気1029	による定量1069
(1) 換気量の測定法1030	(3) 水素化物発生/ICP 発光分光分析法
(2) 必要換気量の測定法1032	による定量1069
11) 気流の方向および空気の分布1032	(4) ICP/質量分析法による定量 ······1071
4.4.2.2 大気環境1032	5) ヒ素(ガス状)1071
1) 気 圧1032	(1) 炭素管フレームレス原子吸光光度法
2) 気 温1033	による完量107

6) 酸 素1071	定量1099
(1) ガルバニ電池式酸素計による定量1072	3) アクリルアルデヒド類1101
(2) 検知管法による定量1073	(1) 高速液体クロマトグラフィーによる
7) オゾンおよびオキシダント ·······1073	定量1101
(1) 中性ヨウ化カリウム法による定量1074	4) 非メタン炭化水素1103
(2) 紫外線吸収法によるオゾンの連続自動	(1) 水素炎イオン化検出法による連続自動
測定法1075	測定法1103
8) 一酸化炭素1076	5) 揮発性有機化合物類(浮遊粒子状物質生
(1) 赤外線吸収法による定量1077	成・光化学オキシダント生成寄与物質)…1103
(2) 検知管法による定量1079	(1) 触媒酸化-非分散型赤外線分析計お
9) 二酸化炭素1080	よび水素炎イオン化型分析計による
(1) 検知管法による定量1080	測定1103
(2) 非分散型赤外線法による定量1081	6) アニリン1106
10) アンモニア	(1) ジアゾ化法による定量1106
(1) インドフェノール法による定量1082	7) 二硫化炭素1107
(2) 検知管法による定量1083	(1) ガスクロマトグラフィーによる定量 …1107
11) 窒素酸化物 (NO, NO ₂)1083	8) ジメチル硫酸1108
(1) ザルツマン法による定量1084	(1) ガスクロマトグラフィーによる定量 …1109
(2) 化学発光法による連続自動測定法1086	9) 低沸点有機硫黄化合物1110
12) 硫化水素1087	(1) ガスクロマトグラフィーによる定量 …1110
(1) 検知管法による定量1087	10) ホスゲン1113
(2) ガスクロマトグラフィーによる定量 …1087	(1) アニリン法による定量1114
13) 二酸化硫黄1087	(2) 検知管法による定量1114
(1) トリエタノールアミン・パラロザニ	11) クロルピクリン1114
リン法による定量1087	(1) ジアゾ化法による定量1114
(2) 溶液導電率法による定量1088	12) 酸化エチレン1115
(3) 紫外線蛍光法による連続自動測定法 …1089	(1) ガスクロマトグラフィー/質量分析法
(4) 検知管法による定量1091	による定量1115
14) フッ化水素1091	13) 揮発性有機化合物(塩化アリル, 塩化エチ
(1) ランタン・アリザリンコンプレクソ	ル,塩化ビニリデン,塩化ビニル,塩化
ン法による定量1091	メチル、塩化メチレン、クロロホルム、
15) 塩 素1092	クロロベンゼン,四塩化炭素,1,1-ジク
(1) ピリジン・ピラゾロン法による定量 …1092	ロロエタン, 1,2-ジクロロエタン, 1,2-
(2) 検知管法による定量1093	ジクロロエチレン, 1,2-ジクロロプロパ
16) 塩化水素1093	
	ン、ジクロロベンゼン、臭化メチル、テ
(1) イオンクロマトグラフィーによる	トラクロロエチレン, 1,1,1-トリクロロ
定量	エタン,トリクロロエチレン,1,2,4-ト
17) 臭 素1094	リクロロベンゼン,二臭化エチレン,ジ
(1) パラロザニリン法による定量1094	クロロジフルオロメタン, ジクロロテト
18) シアン化水素1094	ラフルオロエタン, トリクロロトリフル
(1) ピリジン・ピラゾロン法による定量 …1094	オロエタン, トリクロロフルオロメタ
19) 無機陰イオン1095	ン,エチルベンゼン,キシレン,スチレ
(1) ろ紙捕集・イオンクロマトグラフィー	ン, トルエン, ベンゼン, 1,3-ブタジエ
による定量1095	ン, アクリロニトリル)1117
(2) 雨水中陰イオンのイオンクロマトグラ	(1) ステンレス容器採取-ガスクロマトグラ
フィーによる定量1096	フィー/質量分析法による一斉分析法…1121
4.4.5 有機物質1097	(2) 拡散法(パッシブ法)採取-ガスクロマト
1) メタノール1097	グラフィー/質量分析法による定量(エ
(1) ガスクロマトグラフィー/質量分析法	チルベンゼン, ジクロロベンゼン, キ
による定量1097	シレン, スチレン, トルエンおよびべ
2) アルデヒドおよびケトン類1098	ンゼン)1125
(1) 高速液体クロマトグラフィーによる	14) フェノール1126
(主) 同窓保守/ ト・エノファコーによる	111/ / 4-/ /*

20 目 次

(1) 4-アミノアンチピリン法による定量 …1126
(2) ガスクロマトグラフィー/質量分析法
による定量1126
15) ニトロベンゼンおよびクロロニトロ
ベンゼン1127
(1) ガスクロマトグラフィー/質量分析法
による定量1128
16) ピリジン1128
(1) シアン・ピラゾロン法による定量1129
(2) ガスクロマトグラフィー/質量分析法
による定量1129
17) ベンゾ[a]ピレン ······1130
(1) 高速液体クロマトグラフィーによる
定量1130
18) 芳香族ニトロ化合物(1-ニトロピレン,
3-ニトロフルオランテンおよび 2-ニ
トロフルオレン)1131
(1) 高速液体クロマトグラフィーによる
定量1132
19) ポリ塩化ビフェニル(PCB)1133
(1) ガスクロマトグラフィーによる定量 …1133

20) ダイオキシン類1134
(1) ガスクロマトグラフィー/質量分析法
による定量1135
21) 農薬類(多成分同時分析)1143
(1) ガスクロマトグラフィー/質量分析法
による定量1145
4.4.6 微生物1148
1) 落下細菌数1148
(1) 寒天平板を用いる方法1148
2) 浮遊細菌数1149
(1) スリットサンプラーによる方法1149
3) 落下真菌数1149
(1) 寒天平板を用いる方法1149
4) 浮遊真菌数1149
(1) スリットサンプラーによる方法1149
4.4.7 騒音・振動1149
1) 騒 音1149
(1) 騒音計を用いる測定法1152
2) 振 動1154
(1) 振動レベル計を用いる測定法1154