正誤表

『MR・超音波・眼底 基礎知識図解ノート』第 2 版第 1 刷(2018 年 3 月 30 日発行)に誤りがございました。下記のとおり訂正し、お詫び申し上げます。

2019年9月2日

金原出版株式会社

記

正誤訂正

頁	訂正箇所	誤	正
21	コラム	(図の中段下)	薬機法
	MR 装置に関	改正薬事法	
	する法規	(図の中段下)	2013, 2015, 2017 JIS Z4951 に
		<u>2012</u> JIS Z 4951 改訂版	改訂
		(図下解説)	薬機法
		平成17年改正薬機法	
		(説明文14行目)	JIS が 2017 年版である。
		JISが201 <u>2</u> 年版である。	
49	コラム 装置	平成17年改正薬機法	薬機法
	の管理と法律		
	3 行目		
73	FOV一定で	(図上)	0.94mm×0.94mm
	マトリックス	<u>0.47</u> mm× <u>0.47</u> mm	
	数を変化させ	(図下)	0.47mm×0.47mm
	た場合図	<u>0.94</u> mm× <u>0.94</u> mm	
138	1.特徴 図	(3行目に追加)	●自由水 (CSF など) からの
			信号を抑制
	2 行目	null pointを <u>脳脊髄液</u> に合わせ	null point を自由水(CSFなど)
		たIR法である。	に合わせた IR 法である。
	4 行目	脳脊髄液のT ₁ 値は <u>脳脊</u>	脳脊髄液 (CSF) の T ₁ 値は…
		髄液からの	…CSF からの
	11 行目	磁場の均一性の影響を受け	180° パルスを利用するた
		にくい脳脊髄液信号抑制法	め、磁場の不均一によって生
		<u>である。</u>	じる位相分散の影響を受け
			にくい。
233	A 国際基準	JIS Z4951 201 <u>2</u> 年版(201 <u>2</u> 年)	JIS Z4951 201 <mark>7</mark> 年 <mark>度</mark> 版
	と国内基準		
	図		

	A 国際基準	JISが2012年に公表したもの	JIS が 2017年に公表したもの
	と国内基準	である。	である。
	6行目	C & 7 · 50 °	
		(2行目中央列)	2T / D / OT
	B 安全管理		$3T < B_0 \leq 8T$
	基準(JIS	$3T < B_0 \leq \underline{4}T$	
204	Z4951) 表		2 DDW// D // D //
284	E 各種画像	3. <u>T₂*</u> WI : <u>T₂ Star</u> Weighted	3. PDWI: Proton Density
2.5	画像名	Image	Weighted Image
356	C 屈折	媒質 A(c ₁)	媒質 A(<mark>C1</mark>)
	図 b)	<u></u> 媒質 B(c ₂)	媒質 B(<mark>C2</mark>)
			. ,
		$\frac{\sin \theta_1}{\sin \theta_2} = \frac{c_1}{c_2}$	$\frac{\sin \theta_1}{\sin \theta_2} = \frac{\text{C1}}{\text{C2}}$
357	図の見出し	(C ₁ ≤ C ₂ の時)	(C1 > C2の時)
358	図の見出し	(C ₁ ≥ C ₂ の時)	(C <mark>1 < C2</mark> の時)
508	1 行目	●水中 <u>で</u> 高エネルギーの超音	●水中に高エネルギーの超音
		波を照射すると、キャビテー	波を照射すると,キャビテー
		ション <u>が原因となり, フリー</u>	ションにより発生した気泡
		<u>ラジカル</u> が発生する。	が圧壊して衝撃波が発生す
			る。
	4 行目	キャビテーションで発生し	●発生した衝撃波のエネルギ
		た気泡が圧壊する際に, 衝撃	一ガi,
		波が発生する。その衝撃波エ	
		ネルギーが,	
511	音響出力と	(図右下解説)	超音波強度(W/cm²)は,音圧
	音響強度 図	超音波強度は、音圧P(t)とす	P(t)とすると
		ると	
		<u>音圧</u> I(t)	超音波強度 I(t)
		$I(t) = P(t)^2/\rho c(W/cm^2)$	$I(t) = \frac{P^2(t)}{\rho c}$
		$I(t) = I(t) / \mu c(w / citt)$	$I(t) = \frac{1}{2} \frac{(t)}{\rho c}$
515	3 行目	画質を濃度分解能 <u>評価</u> ,	画質を濃度分解能, 距離
		距離分解能, 方位分解能, 至	分解能, 方位分解能, 至近距
		近距離分解能 <u>評価</u> ,	離分解能,

正誤表

『MR・超音波・眼底 基礎知識図解ノート』第2版第1刷(2018年3月30日発行)に誤りがございました。下記のとおり訂正し、お詫び申し上げます。

2018年11月20日

金原出版株式会社

記

頁	訂正箇所	誤	正
64	6.周波数エン	位置と周波数を <u>させて</u> おけ	位置と周波数を対応させて
	コード	ば、位置を特定できることに	おけば、位置を特定できるこ
	下から3行目	なる。	とになる。
148	D.Dixon 法	$\underline{\text{TR}} = 4.5 \text{ms} $ のときは再び	TE = 4.5 ms のときは再び
	下から3行目	同位相(in phase)となる。	同位相(in phase)となる。
216	3.ゴーストの 間隔	$D [pixel] = \frac{TR [s] \times Ny \times NEX}{$ 体動の周波数	D [pixel] = TR [s] ×Ny×NEX 体動の周期
	図中の式		

以上